

CW32F030FxPx StartKit User Manual Rev 1.0

www.whxy.com

Introduction

The CW32F030FxPx StartKit evaluation board provides users with an economical and flexible way to build system prototypes using the CW32F030FxPx chip. All aspects of performance, power consumption, and functionality can be quickly verified.

The CW32F030FxPx StartKit evaluation board needs to be used with the CW-DAPLINK debugger.

The CW32F030FxPx StartKit evaluation board comes with the CW32F030 StartKit software package and the CW32F030-StdPeriph-Lib firmware library and routines.

The CW32F030FxPx StartKit evaluation board is shown in the following figure:

Contents

Intr	oduc	tion	. 1
1	Features		
2	Orde	ering Information	. 4
3	Development Environment		
	3.1	System Requirements	5
	3.2	Integrated Development Environment	5
	3.3	Demo Software	5
4	Special Conventions		
5	Quick Start		
	5.1	Getting Started Guide	7
6	Hardware layout		
	6.1	PCB layout and mechanical dimensions	8
	6.2	Use of debugger	10
	6.3	Power supply and power selection	11
	6.4 Evaluation board functions		12
7	Revision history		

1 Features

- CW32F030FxPx microcontroller (ARM[®] Cortex[®]-M0+ up to 64MHz), TSSOP20 package, 32Kbytes FLASH, 6Kbytes RAM
- Three LEDs :
 - Power indicator (LED3), User indicator (LED1, LED2)
- Three switches:
 - Reset switch (S3), User switch (S1, S2)
- USB to serial port chip (CH340N)
- FLASH chip (W25Q64JVSSIQ)
- EEPROM chip (CW24C02AD)
- On-board interfaces:
 - Mini USB interface (serial communication, USB powered)
 - Downloader debug interface
 - All GPIO ports are pin-out via pin header
- Multiple power supply methods: USB VBUS power supply, 3.3V power supply (LD1117AS33TR), external 1.65V-5.5V power supply
- The CW32F030-StdPeriph-Lib package provides a comprehensive set of free firmware libraries and routines
- Support for multiple IDEs, IAR ™, Keil®

2 Ordering Information

To order the CW32F030FxPx StartKit evaluation board, please refer to the table below. For more information, refer to the CW32 series MCU datasheet and User Manuals.

Table 2-1 Or	dering Information
--------------	--------------------

Evaluation Board Code	Microcontroller Model
CW32F030FxPx StartKit	CW32F030FxPx

3 Development Environment

3.1 System Requirements

Windows® OS (7,8,10), CW-DAPLINK debugger

Note: Windows® OS 7 and Windows® OS 8 require the CW-DAPLINK driver to be installed.

3.2 Integrated Development Environment

- EWARM v7.70 or higher
 - 30-day evaluation version
 - 32-Kb upper limit Quick Start version (ARM® Cortex®-M0 limited to 16-Kb)
- MDK-ARM v5.17 or higher
 - MDK-Lite (32-Kb code size limit)

Note: Only Windows® is supported

3.3 Demo Software

The demo software is included in the CW32F030 StartKit package that corresponds to the on-board microcontroller and is pre-installed in the CW32 flash memory for demonstrating device peripherals in standalone mode. The demo software source code and related documentation can be downloaded from the website (*www.whxy.com*).

4 Special Conventions

The conventions for ON and OFF settings in this document are shown in the following table:

Table 4-1 ON/OFF conventions

Conventions	Definitions
Jumper Jx ON	Jumper cap connected
Jumper Jx OFF	Jumper cap not connected
Jumper Jx [1-2]	Jumper caps connect Pin1 and Pin2
Resistor JPx ON	Solder 0Ω resistor
Resistor JPx OFF	Unsoldered 0Ω resistor

5 Quick Start

The CW32F030FxPx StartKit evaluation board is a low-cost development kit for quickly evaluating the performance and functionality of the CW32F0 family of microcontrollers in the TSSOP20 package. Before installing and using the product, please accept the license agreement for the evaluation product from the website.

5.1 Getting Started Guide

Follow the steps below to configure the CW32F030FxPx StartKit evaluation board:

- 1. Confirm the location of the jumper caps on the evaluation board (See *Table 5-1 Jumper Configuration*);
- 2. Connect the CW-DAPLINK debugger, confirm that the host-side driver has been properly installed, and connect the debug interface cable to the evaluation board properly;
- 3. Powering the evaluation board by connecting to the evaluation board USB connector CN1 using a USB cable (Type-A to Mini USB);
- 4. Red LED3 is lit (power indicator) and green LED1 and LED2 are flashing alternately;
- 5. Press the S1 button to observe LED1 flashing and LED2 going off;
- 6. Press the S2 button to observe LED2 flashing and LED1 going off;
- 7. The CW32F030 StartKit demo software can be downloaded from the official website to help you quickly understand the CW32F030FxPx StartKit evaluation board features;
- 8. Develop your own programs based on the provided routines.

Table 5-1 Jumper Configuration

Jumper	Definition	ON/OFF	Function
J24[3-4]	VDDLDO	ON	Powering the system with a VDDLDO step-down power supply
J23		ON	Shorting without system current measurement
J22		ON	Shorting without analog partial current measurement
J21		ON	Shorting without digital partial current measurement

6 Hardware layout

The CW32F030FxPx StartKit evaluation board is based on the CW32 microcontroller design in the TSSOP20 package. *Figure 6-1 Top-level device layout* shows the placement of the CW32 microcontroller chip with its peripherals (buttons, LEDs, FLASH, EEPROM, USB to serial port, debugger interface). *Figure 6-2 CW32F030FxPx StartKit Mechanical Dimensions* shows the mechanical dimensions of the evaluation board.

6.1 PCB layout and mechanical dimensions

6.2 Use of debugger

Xinyuan Semiconductor provides the CW-DAPLINK debugger for users to use to connect the host computer to the debugger (Type-A to Type-C) using a USB cable. The evaluation board also supports the use of ST-LINK and J-LINK debuggers. The connection is shown in the following figure:

CW-DAPLINK Driver

For Windows[®] 10 systems, CW-DAPLINK is driver free. For some Windows[®] 7 or Windows[®] 8 systems, the CW-DAPLINK virtual serial port is not available, so you need to add the driver manually.

The driver can be downloaded from the official website. Refer to the CW-DAPLINK User Manual for details of the driver installation procedure.

6.3 Power supply and power selection

Power can be provided via USB or from an external power supply: DCIN pin of CN24 pin header (1.65V to 5.5V). Microcontroller operating voltage can be selected via J24, which is configured as shown in the following table:

Jumper connections	Operating Voltage	
J24[1-2]	3.3V (LD1117AS33TR)	
J24[3-4]	5V (USB input voltage)	
J24[5-6]	DCIN input voltage	

Table 6-1 J24 configuration

6.4 Evaluation board functions

LEDs

- Power indicator (LED3)
 Red LED3 is on to indicate that the evaluation board is powered on, if J21, J22 and J23 are connected, the microcontroller is powered on at this time.
- User indicators (LED1, LED2)
 Green LED1 and LED2 connected to CW32F030FxPx I/O:
 - PB09 connected to LED1 anode
 - PB08 connected to LED2 anode

Switches

- Reset switch (S3)
 - This switch is connected to the NRST pin and is used to reset the CW32F0 microcontroller.
- User switch (S1, S2)

PA01 connected to S1, external pull-up resistor PA02 connected to S2, external pull-up resistor

USB to serial port

The CW32F030FxPx StartKit evaluation board has the CH340N USB to serial chip soldered on it. Users can use the CN9 pin header to configure the CH340N operating voltage, the serial transmit pins to I/O, and the serial receive pins to I/O. The following table describes how to connect J5 when the CH340N is operating at 3.3V or 5V (CN9 VDDU is connected to a different power supply).

CH340N Operating Voltage	J5 Connection
3.3V	J5[2-3]
5V	J5[1-2]

Table 6-2 J5 Connection Description

FLASH chip

The CW32F030FxPx StartKit evaluation board has the W25Q64JVSSIQ FLASH chip soldered on it, and the user can configure the W25Q64 operating voltage, SPI_NCS pin, SPI_MISO pin, SPI_MOSI pin, and SPI_SCK pin using the CN10 pin header.

EEPROM chip

The CW32F030FxPx StartKit evaluation board has the CW24C02AD EEPROM chip already soldered in it, and the user can configure the CW24C02AD operating voltage, SDA pins, and SCL pins using the CN11 pin header.

Crystal oscillator

The CW32F030FxPx StartKit evaluation board is already soldered with a 16MHz high speed crystal. It is connected to GPIO by default. The following table describes how to switch between crystal interface and normal GPIO using different resistor soldering methods.

	8
Resistor JPx Soldering Method	Function
Resistor JP1 JP3 ON,JP2 JP4 OFF	PF00 PF01 connected to high-speed crystal
Resistor JP1 JP3 OFF,JP2 JP4 ON	PF00 PF01 used as general GPIO

Table 6-3 Crystal and General GPIO Configuration

Programmer Interface

The CW32F030FxPx StartKit evaluation board leads to the programmer interface, which allows users to connect the programmer to the CN7 programmer interface for offline programming.

Extended Interface

The CW32F030FxPx StartKit evaluation board pins out the GPIO of the microcontroller to the pin header, the layout of which is shown in the following figure, and the pin functions are shown in the following table:

Connector	Pin No.	CW32F0 pin	Function
	1-4	GND	Ground
	5,6	SWCLK (PA14)	UART3_TXD, I2C1_SCL, UART1_TXD, UART2_TXD, I2C2_SDA
	7,8	SWDIO (PA13)	I2C1_SDA, UART1_RXD, UART2_RXD, I2C2_SCL, IR_OUT
	9,10	PA10	UART3_RXD, UART1_CTS, I2C1_SDA, BTIM1_TOGN, SPI1_SCK, GTIM3_CH2, ATIM_CH3A
	11,12	PA9	UART3_TXD, UART1_RXD, I2C1_SCL, BTIM1_TOGP, SPI1_CS, GTIM3_CH1, ATIM_CH2A
	13,14	VDD	Digital power supply
	15,16	GND	Ground
CN3	17,18	PB01	UART2_TX, UART1_RTX, I2C2_SDA, GTIM4_TOGN, BTIM3_TOGP, GTIM1_CH4, ATIM_CH3B; ADC_IN9, VC2_CH4
	19,20	PA07	GTIM4_CH1, UART2_RX, VC2_OUT, BTIM1_TOGP, SPI1_MOSI, GTIM1_CH2, ATIM_CH1B; ADC_IN7, VC1_CH7, VC2_CH2
	21,22	PA06	GTIM3_CH1, UART2_TX, VC1_OUT, BTIM2_TOGN, SPI1_MISO, GTIM1_CH1, ATIM_BK; ADC_IN6, VC1_CH6, VC2_CH1
	23,24	PA05	GTIM2_ETR, UART2_RTS, I2C2_SDA, BTIM2_TOGP, SPI1_SCK, GTIM2_CH1, ATIM_CH1A; ADC_IN5, VC1_CH5, VC2_CH0
	25-28	GND	Ground

Table 6-4 Pin Function

Connector	Pin No.	CW32F0 pin	Function
	1-4	GND	Ground
	5,6	BOOT (PF03)	Bootloader
	7,8	PF00	AWT_ETR, GTIM4_CH2, I2C1_SDA, BTIM1_TOGP, SPI2_SCK, GTIM2_TOGN, GTIM3_CH3; OSC_IN
	9,10	PF01	LSE_OUT, GTIM4_CH1, I2C1_SCL, SPI2_CS, GTIM3_CH4, GTIM2_TOGP, BTIM1_TOGN; OSC_OUT
	11,12	NRST	Device reset input
	13,14	VDDA	Analog power supply
CN5	15,16	PA00	UART3_CTS, UART2_CTS, RTC_TAMP, VC1_OUT, SPI2_MISO, GTIM2_CH1, GTIM2_ETR; ADC_IN0, VC1_CH0, LVD_CH1
	17,18	PA01	UART3_RTS, UART2_RTS, I2C2_SCL, LVD_OUT, SPI2_MOSI, GTIM2_CH2, RTC_TAMP; ADC_IN1, VC1_CH1
	19,20	PA02	UART3_TX, UART2_TX, I2C2_SDA, VC2_OUT, SPI2_SCK, GTIM2_CH3, AWT_ETR; ADC_IN2, VC1_CH2
	21,22	PA03	UART3_RX, UART2_RX, GTIM2_CH2, PCLK_OUT, SPI2_CS, GTIM2_CH4, ATIM_CH3A; ADC_IN3, VC1_CH3
	23,24	PA04	UART2_CTS, I2C2_SCL, HCLK_OUT, SPI1_CS, GTIM2_ETR, ATIM_CH2A; ADC_IN4, VC1_CH4
	25-28	GND	Ground

Additional Notes:

1. The evaluation board CN10 connector pin definition, as shown in the following figure:

Figure 6-5 CN10 pin definition

2. The evaluation board CN11 connector pin definition, as shown in the following figure:

Figure 6-6 CN11 pin definition

- 3. J25 BOOT pin description

The BOOT pin is low level by default. If you want to set the BOOT pin to be high level, short J25.

4. JP10、JP11 resistor description

When performing ADC sampling, the JP10 and JP11 resistor bits can be soldered with 0Ω resistors, and the sampled signal can be filtered. When using other functions of GPIO, disconnect the 0Ω resistors connected to JP10 and JP11.

7 Revision history

Date	Revision	Changes
May 18, 2023	Rev 1.0	Initial release.

Table 7-1 Document revision history

