

CW32F003ExPx StartKit 使用手册

前言

前言

CW32F003ExPx StartKit 评估板为用户提供一种经济且灵活的方式使用 CW32F003ExPx 芯片构建系统原型。可进行性能、功耗、功能等各方面快速验证。

CW32F003ExPx StartKit 评估板需要搭配 CW-DAPLINK 调试器一起使用。

CW32F003ExPx StartKit 评估板带有 CW32F003 StartKit 软件包及 CW32F003-StdPeriph-Lib 固件库和例程。 CW32F003ExPx StartKit 评估板如下图所示:

目录

前言	ī		1	
1	评估板特性			
2	订购信息			
3	开发环境			
	3.1	系统要求	5	
	3.2	集成开发环境	5	
	3.3	演示软件	5	
4	特别约定			
5	快速	开始	7	
	5.1	入门指南	7	
6	硬件布局			
	6.1	PCB 布局和机械尺寸	8	
	6.2	调试器使用	10	
	6.3	电源及电源选择	11	
	6.4	评估板功能	12	
7	版本信息			

1 评估板特性

- CW32F003ExPx 微控制器(ARM[®] Cortex[®]-M0+ 最高主频 48MHz),TSSOP24 封装,20K 字节 FLASH, 3K 字节 RAM
- 3颗LED:
 - 电源指示灯(LED3),用户指示灯(LED1,LED2)
- 三个轻触开关:
 - 复位轻触开关(S3),用户轻触开关(S1,S2)
- USB 转串口芯片(CH340N)
- FLASH 芯片(W25Q64JVSSIQ)
- EEPROM 芯片(CW24C02AD)
- 板载接口:
 - Mini USB 接口(串口通信, USB 供电)
 - 下载器调试接口
 - 所有 GPIO 口通过排针引出
- 多种方式供电: USB VBUS 供电, 3.3V 供电(LD1117AS33TR), 外接 1.65V~5.5V 供电
- CW32F003-StdPeriph-Lib 软件包提供全面免费的固件库和例程
- 支持多种集成开发环境,IAR™,Keil®

2 订购信息

需订购 CW32F003ExPx StartKit 评估板,请参考下表。更多的信息可以参阅 CW32 系列 MCU 的数据手册和 用户手册。

表 2-1 订购信息

评估板代码	微处理器型号
CW32F003ExPx StartKit	CW32F003ExPx

3 开发环境

3.1 系统要求

Windows[®] OS(7,8,10)、CW-DAPLINK 调试器 备注: Windows[®] OS 7 和 Windows[®] OS 8 需要安装 CW-DAPLINK 驱动

3.2 集成开发环境

- EWARM v7.70 或更高版本
 - 30 天评估版
 - 32-Kb 上限快速入门版本(Cortex M0 限 16-Kb)
- MDK-ARM v5.17 或更高版本
 - MDK-Lite(32-Kb 代码大小限制)

备注: 仅支持 Windows®

3.3 演示软件

演示软件包含在与板载微控制器对应的 CW32F003 StartKit 软件包中,并且预装在 CW32 闪存中,以便在独立模式下演示设备外设。演示软件源代码及相关文档可以从官网(www.whxy.com)上下载。

4 特别约定

本文档中 ON 和 OFF 设置的约定如下表所示:

表 4-1 ON/OFF 约定

约定	定义
跳线 Jx ON	跳线帽连接
跳线 Jx OFF	跳线帽未连接
跳线 Jx [1-2]	跳线帽连接 Pin1 和 Pin2
电阻 JPx ON	焊接 0Ω 电阻
电阻 JPx OFF	未焊接 0Ω 电阻

5 快速开始

CW32F003ExPx StartKit 评估板是一款用于快速评估 TSSOP24 封装的 CW32F0 系列微控制器性能和功能的低成本开发套件。在安装和使用产品之前,请从官网接受评估产品的许可协议。

5.1 入门指南

按照下列步骤配置 CW32F003ExPx StartKit 评估板:

- 1. 确认评估板上跳线帽的位置(参见表 5-1 跳线配置);
- 2. 连接 CW-DAPLINK 调试器,确认主机端驱动程序已经正确安装,并将调试接口线正确连接至评估板;
- 3. 给评估板供电,使用 USB 电缆(Type-A 转 Mini USB)连接至评估板 USB 连接器 CN1;
- 4. 红色 LED3 点亮(电源指示灯),绿色 LED1,LED2 交替闪烁;
- 5. 按下 S1 按钮,可观察 LED1 闪烁, LED2 熄灭;
- 6. 按下 S2 按钮,可观察 LED2 闪烁, LED1 熄灭;
- 7. 可在官网下载 CW32F003 StartKit 演示软件,有助于快速了解 CW32F003ExPx StartKit 评估板特征;
- 8. 根据提供的例程开发用户自己的程序。

表 5-1 跳线配置

跳线	定义	位置	功能
J24[3-4]	VDDLDO	ON	使用 VDDLDO 降压后的电源给系统供电
J23		ON	短接不进行系统电流测量

6 硬件布局

CW32F003ExPx StartKit 评估板是围绕 TSSOP24 封装的 CW32 微控制器设计的。图 6-1 顶层器件布局显示了 CW32 微控制器芯片与其外围设备(按钮、LED、FLASH、EEPROM、USB 转串口、调试器接口)之间的位置。 图 6-2 CW32F003ExPx StartKit 机械尺寸显示了评估板的机械尺寸。

6.1 PCB 布局和机械尺寸

图 6-2 CW32F003ExPx StartKit 机械尺寸

6.2 调试器使用

芯源半导体提供 CW-DAPLINK 调试器供用户使用,使用 USB 电缆连接主机与调试器(Type-A 转 Type-C),同时评估板也支持使用 ST-LINK 和 J-LINK 调试器。连接方式如下图所示:

图 6-3 典型的连接方式

CW-DAPLINK 驱动

若使用的是 Windows®10 系统,CW-DAPLINK 是免安装驱动的,对于部分 Windows®7 或 Windows®8 系统, 会存在 CW-DAPLINK 虚拟串口不可用的情况,这时需要手动添加驱动。

驱动可在官网上下载。驱动程序安装步骤详情参阅 CW-DAPLINK 使用手册。

6.3 电源及电源选择

电源可通过 USB 提供,也可由外部电源提供: CN24 排针 DCIN 引脚(1.65V 至 5.5V)。微控制器工作电压 可通过 J24 进行选择,J24 的配置情况如下表所示:

表 6-1 J24 配置情况	表 6-1	J24 配置情况
----------------	-------	----------

跳线连接	控制器工作电压
J24[1-2]	DCIN 输入电压
J24[3-4]	3.3V (LD1117AS33TR)
J24[5-6]	5V(USB 输入电压)

6.4 评估板功能

LED

- 电源指示灯 LED3
 红色 LED3 亮表示评估板已通电,若 J23 连接,此时微控制器已通电。
- 用户 LED1、LED2
 绿色 LED1 和 LED2 连接至 CW32F003ExPx I/O:
 - PA07 连接至 LED1 阳极
 - PA06 连接至 LED2 阳极

轻触开关

- S3 复位开关 该开关连接至 NRST,用于复位 CW32F0 微控制器。
- S1、S2用户开关
 PB05 连接至 S1,外接上拉电阻
 PB06 连接至 S2,外接上拉电阻

USB 转串口

CW32F003ExPx StartKit 评估板已焊接 CH340N USB 转串口芯片,用户可使用 CN9 排针配置 CH340N 工作 电压,串口发送引脚连接 I/O,串口接收引脚连接 I/O。下表介绍了 CH340N 为 3.3V 或 5V 工作电压时 (CN9 VDDU 连接不同的电源),J5 的连接方式。

表 6_2 Ⅰ5 连接说阳

	55 庄政师约
CH340N 工作电压	J5 连接
3.3V	J5[2-3]
5V	J5[1-2]

FLASH 芯片

CW32F003ExPx StartKit 评估板已焊接 W25Q64JVSSIQ FLASH 芯片,用户可使用 CN10 排针配置 W25Q64 工 作电压,SPI_NCS 引脚,SPI_MISO 引脚,SPI_MOSI 引脚,SPI_SCK 引脚。

EEPROM 芯片

CW32F003ExPx StartKit 评估板已焊接 CW24C02AD EEPROM 芯片,用户可使用 CN11 排针配置 CW24C02AD 工作电压,SDA 引脚,SCL 引脚。

编程器接口

CW32F003ExPx StartKit 评估板将编程器接口引出,用户可将编程器连接至 CN7 编程器接口,进行离线编程。

扩展接口

CW32F003ExPx StartKit 评估板将微控制 GPIO 引出至排针,其布局如下图所示,引脚功能如下表所示:

图 6-4 扩展接口布局

连接器	引脚编号	CW32F0 引脚	功能
	1-4	DVSS	地
	5,6	PC00	UART2_RXD, UART1_TXD, SPI_SCK, ATIM_CH1A, GTIM_CH2, BTIM1_TOGP, HCLK_OUT
	7,8	PC01	UART2_TXD, GTIM_ETR, SPI_MISO, ATIM_CH2A, GTIM_CH3, BTIM1_TOGN, VC1_OUT
	9,10	PC02	UART2_RXD, IR_OUT, SPI_MOSI, ATIM_CH3A, GTIM_CH4, HCLK_OUT, AWT_ETR
	11,12	NRST	芯片复位输入
	13,14	PC03	UART1_TXD, SPI_CS, SPI_MISO, ATIM_CH3B, GTIM_CH3, GTIM_TOGP, ATIM_BK
CN2	15,16	PB00	UART1_RXD, I2C_SDA, SPI_CS, ATIM_CH1B, GTIM_CH1, GTIM_TOGP, AWT_ETR
	17,18	PC04	UART1_RXD, IR_OUT, SPI_MOSI, ATIM_CH2B, GTIM_CH4, GTIM_TOGN, ATIM_GATE
	19,20	PB01	UART1_TXD, LVD_OUT, I2C_SCL, ATIM_BK, GTIM_CH2, GTIM_TOGN, AWT_ETR
	21,22	DVSS	地
	23,24	PA02	UART1_RXD, UART2_TXD, I2C_SDA, GTIM_ETR, GTIM_CH3, VC2_OUT, AWT_ETR
	25,26	DVCC	电源供电
	27,28	PB07	UART2_RXD, UART1_TXD, SPI_SCK, ATIM_GATE, GTIM_CH1, BTIM2_TOGN, BTIM_ETR
	29-32	DVSS	地

表 6-3 引脚功能

连接器	引脚编号	CW32F0 引脚	功能
	1-4	DVSS	地
	5,6	PA07	UART1_RTS, UART2_RXD, VC1_OUT, ATIM_CH1B, GTIM_CH4, BTIM3_TOGN, ATIM_BK
	7,8	PA06	UART1_CTS, UART2_TXD, I2C_SDA, ATIM_CH2B, GTIM_CH3, BTIM3_TOGP, LVD_OUT
	9,10	PA05	UART1_TXD, UART2_RXD, I2C_SCL, ATIM_GATE, GTIM_CH4, BTIM_ETR, MCO_OUT
	11,12	PA04	UART1_RXD, IR_OUT, SPI_MISO, ATIM_CH3B, GTIM_CH2, BTIM2_TOGN, GTIM_ETR
	13,14	PA03	UART2_TXD, UART1_RXD, PCLK_OUT, ATIM_BK, GTIM_ETR, BTIM2_TOGP, LVD_OUT
CNI2	15,16	PA01	UART2_TXD, VC2_OUT, SPI_MOSI, ATIM_CH3B, GTIM_CH1, BTIM2_TOGP, MCO_OUT
CNS	17,18	PA00	UART1_RXD, UART2_RTS, SPI_SCK, ATIM_CH3A, GTIM_CH4, BTIM1_TOGN, VC1_OUT
	19,20	PB02	UART1_TXD, UART2_CTS, SPI_CS, ATIM_CH2B, GTIM_CH3, BTIM1_TOGP, MCO_OUT
	21,22	PB03	UART2_RXD, I2C_SDA, PCLK_OUT,ATIM_CH2A, GTIM_CH2, BTIM3_TOGP, IR_OUT
	23,24	PB04	UART2_TXD, I2C_SCL, GTIM_ETR, ATIM_ETR, GTIM_CH1, BTIM3_TOGN, ATIM_BK
	25,26	PB05	UART1_RXD, I2C_SDA, BTIM_ETR, ATIM_CH1B, GTIM_TOGN, BTIM2_TOGN, ATIM_BK
	27,28	PB06	UART1_TXD, I2C_SCL, SPI_CS, ATIM_CH1A, GTIM_TOGP, BTIM2_TOGP, HCLK_OUT
	29-32	DVSS	地

补充说明:

 JP5、6、7 电阻位说明
 在进行 ADC 采样时,可将 JP5、6、7 电阻位焊接 0Ω 电阻,可对采样信号进行滤波。在使用 GPIO 其他 功能时,需断开 JP5、6、7 连接的 0Ω 电阻。

7 版本信息

表 7-1 文档修订信息

日期	版本	变更信息
2021-12-06	Rev 1.0	初始发布
2022-01-10	Rev 1.1	更新评估板特性章节外接供电电压值; 更新电源及电源选择小节外部电源电压值(1.6V更新为 1.65V)。

